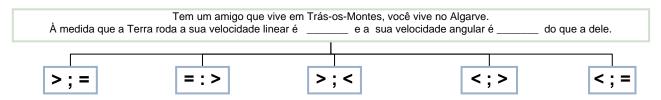


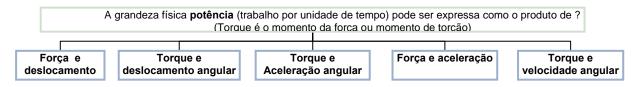
Mecânica e Ondas – MO Curso LERC

1º TESTE

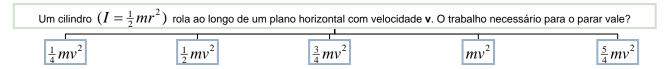
2010/2011 – 2º Semestre – 6-04-2011 – 9h30m Duração: 1h30 Resp: Prof. João Carlos Fernandes (Dep. Física)



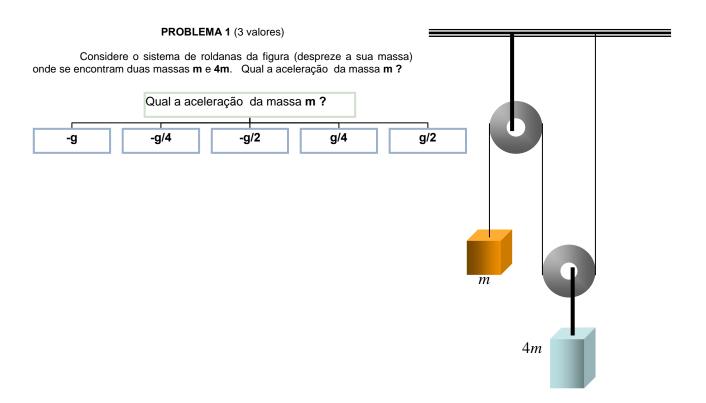
TAGUS	PAF	≀K
-------	-----	----


Nº:	Nome:		
	•		

Todas as questões têm escolha múltipa e espaço para a resolução. A escolha de uma solução sem a respectiva resolução implica um critério de avaliação negativo nas respostas erradas.

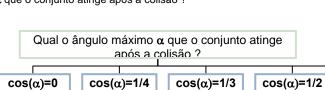

Questão I

Questão II



Questão III

Questão IV



PROBLEMA 2 (3 valores)

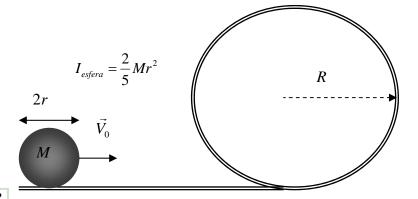
Um pêndulo de massa \mathbf{m} e comprimento \mathbf{L} é deixado cair de um ângulo $\mathbf{\theta}$ com a vertical. Choca com uma bola de plasticina que estava em cima de uma mesa e seguem juntos após o choque.

Dados: $M=(\sqrt{3}-1)m$ e $\cos(\Box)$ = 1/4 . Qual o ângulo máximo α que o conjunto atinge após a colisão ?

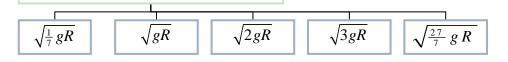
PROBLEMA 3 (3 valores)

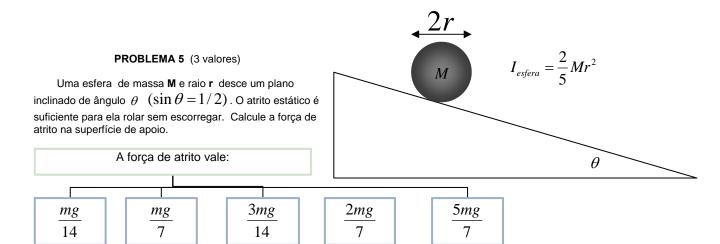
Uma criança de massa m_1 e um marinheiro de massa $m_2=2m_1$ estão sentados nas duas extremidades de um barco, um na proa outro na popa. O barco está em repouso, tem massa $M=7m_1$ e comprimento L = 5 m.

Supondo que o movimento do barco sobre a água decorre sem qualquer resistência, qual a distância que o barco percorre quando a criança e o marinheiro trocam os seus lugares? (Sugestão: use as propriedades do centro de massa do sistema).



PROBLEMA 4 (4 valores)


Uma esfera de raio ${\bf r}$ e massa ${\bf M}$, rola sem escorregar em direcção a um looping circular de raio ${\bf R}$


$$(r \ll R)$$
.

Qual a velocidade mínima a que a devemos lançar para que descreva todo o loop sem cair ?

Qual a velocidade mínima para passar o loop?

