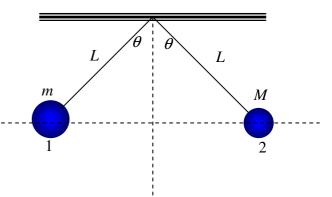


Mecânica e Ondas – MO Curso LERC

1º TESTE

TAGUS PARK

2009/2010 - 2º Semestre - 27-03-2010 - 9h00m


Duração: 1h30 Responsável: Prof. João Carlos Fernandes (Dep. Física)

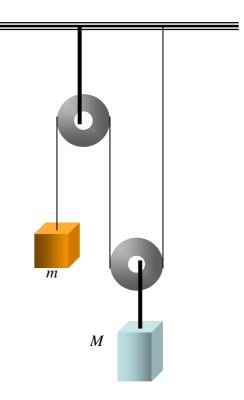
Nº:	Nome:		

PROBLEMA 1

Dois pêndulos de massas m e M diferentes mas com o mesmo comprimento de fio L, caem da mesma altura, fazendo um ângulo θ com a vertical. Chocam elasticamente.

a) Qual deve ser a relação entre as massas: $K = \frac{m}{M}$ de modo que a bola 1 fica parada depois do choque ?

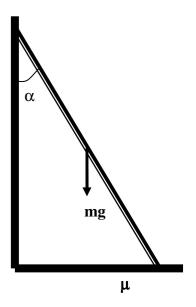
- b) Nas condições da alínea anterior, qual o ângulo máximo α que a bola 2 atinge após a colisão ?
- c) Nas mesmas condições anteriores, o que acontece se o ângulo inicial for maior que 60° ($\theta \ge \frac{\pi}{3}$) ?:

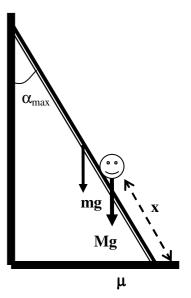

PROBLEMA 2

Considere o sistema de roldanas da figura (despreze a sua massa) onde se encontram duas massas m e M.

- a) Qual é a condição de equilíbrio estático do sistema e, nessa situação, qual a força total que se exerce sobre a barra superior?
- b) Determine as acelerações de cada um dos corpos em função das massas m e M ?

Escreva a expressão da força total sobre a barra superior, nesta situação dinâmica, e compare-a com a obtida na alínea anterior.


c) Determine a aceleração do centro de massa do sistema?


PROBLEMA 3

Considere uma escada de massa ${\bf m}$ que faz um ângulo α com a parede vertical. Conhecemos o coeficiente de atrito estático $\mu_{\rm S}$ entre a escada e o chão e assumimos que não há atrito na parede vertical.

a) determine a inclinação máxima $lpha_{\max}$ para que a escada não escorregue.

b) Assumindo que uma criança de massa M sobe uma distância x na escada com inclinação máxima α_{\max} , determine a força de atrito estático entre a escada e o chão em função de x.

c) Determine o valor x_{max} até onde a criança pode subir antes da escada escorregar.